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Abstract. Using a systematic series of basis sets in
supermolecular and symmetry-adapted intermolecular
perturbation theory calculations it is examined how
interaction energies of various water dimer structures
change upon addition and shifting of bond functions.
Their addition to augmented double- and triple-zeta
basis sets brings the sum of the electron correlation
contributions to the second-order interaction energy
nearly to convergence, while accurate first-order elec-
trostatic and exchange contributions require better than
augmented quadruple-zeta quality. A scheme which
combines the different perturbation energy contributions
as computed in different basis subsets performs
uniformly well for the various dimer structures. It yields
a symmetry-adapted perturbation theory value of
—21.08 kJ/mol for the energy of interaction of two
vibrationally averaged water molecules compared to
—21.29 kJ/mol when the full augmented triple-zeta basis
set is used throughout.

Key words: Water dimer — Symmetry-adapted pertur-
bation theory — Bond functions — Basis function subsets

1 Introduction

More than two decades after the establishment of the
current experimental estimate of its dissociation energy
[1, 2] and its first thorough ab initio investigations
(reviewed in Ref. [3]) the water dimer continues to be a
challenging system for theoretical work. Detailed knowl-
edge of the complete potential-energy surface for the
interacting molecules is needed not only for the accurate
calculation of dimer properties, such as the second virial
coefficient or its vibration-rotation—tunneling (VRT)
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spectrum, but also forms the basis for the identification
of many-body effects in, for example, the VRT spectra of
larger water clusters or in the condensed-phase proper-
ties of water. Many different analytical expressions for
the interaction energy surface of two water molecules
have been proposed over the years. Millot et al. [4] have
recently tested 14 of these potentials for their ability to
reproduce the temperature dependence of experimental
second virial coefficients, B(7). While it was found that
many of them failed that test, a family of potentials
termed ASP-Wx [4, 5] turned out to be close to or within
the experimental error bars. The ASP-WX potentials are
based on intermolecular perturbation theory calcula-
tions in the version of Hayes and Stone [6, 7] combined
with various distributed multipole and polarizability
models of electrostatic and induction interations and a
damped 1/R expansion of the dispersion energy. Yet,
subsequently it has been shown that these potentials are
far from reproducing the tunneling splittings in the VRT
spectra of the dimer [8, 9], which were much better
described by the related ASP-S potential. This potential,
however, yields unacceptable values for B(T) [5]. Sim-
ilarly, other well-known potential expressions do not
pass one of the tests or both, while very recently an
empirical reparameterization [10] of the original ASP-W
potential [5] intended to fit VRT spectra of the dimer
resulted in the first model potential which succeeds in
both tests.

Three years ago, two analytical forms of the water—
water interaction potential called SAPT-ss and SAPT-pp
were derived from symmetry-adapted perturbation the-
ory (SAPT) calculations [11]. The SAPT-pp potential is
similarly successful in describing B(T) as the ASP-W2
and ASP-W4 potentials. Unfortunately, it seems not to
have been tested in calculations of the tunneling split-
tings so far. Like the ASP-Wx potentials the SAPT-ss
and SAPT-pp potentials are based on intermolecular
perturbation theory, yet in the much more elaborate
version described and implemented by Jeziorski and
coworkers [12, 13]: the effects of intramonomer electron
correlation on the first-order exchange-overlap and also



the first-order electrostatic “penetration” contributions
to the interaction energy are taken into account using
coupled-cluster or third-order Mpgller—Plesset descrip-
tions of the monomers, and the second-order induction
(including charge transfer) and dispersion energy
contributions are calculated explicitly along with their
exchange-overlap and penetration corrections, without
the need to introduce them via a damping function
ansatz. SAPT calculations may be compared to usual
supermolecular calculations in that their results depend
solely on the set of basis functions employed, once that
the “method” (interaction energy contributions consid-
ered, level of description of static and response monomer
properties) has been chosen. In contrast to the super-
molecular method, however, SAPT provides directly the
individual physical contributions to the interaction
energy, which allows meaningful individual analytical
expressions to be fitted to them — and this feature
of intermolecular perturbation theory calculations was
used to derive the SAPT-pp potential from calculations
at 1056 geometries of the water dimer [11].

The last few years have witnessed a breakthrough in
the estimation of the accurate electronic dissociation
energy with the supermolecular scheme on the second-
order Moller-Plesset (MP2) and coupled-cluster single—
double and perturbative triple excitation [CCSD(T)]
levels of theory [14-19]. To estimate basis set limits for
the interaction energy, two approaches have been used.
In the first, one tries to extrapolate the results obtained
with systematic series of basis sets with increasing
numbers of Gaussians representing the orbitals and in-
creasing highest angular momentum quantum numbers
[15, 16, 18, 20], while the second one consists in utilizing
the excellent convergence properties of the R12 ansatz of
Kutzelnigg and Klopper [21, 22] to establish the basis set
limit directly from (uncontracted) sets of basis functions
with comparatively low angular momenta [14, 19]. These
investigations have shown that it is extremely difficult to
saturate the basis set well enough to achieve an accuracy
of £0.2 kJ/mol, i.e., 1% of the interaction energy, at the
approximate minimum geometry of the water dimer. For
example, using the widely employed augmented corre-
lation-consistent basis sets of Dunning and coworkers
[23, 24] in frozen-core MP2 calculations an aug-cc-pV5Z
set comprising 574 contracted basis functions yields an
interaction energy of —20.84 kJ/mol [18] and —20.28 kJ/
mol when the basis set superposition error (BSSE) [20] is
corrected for by the counterpoise correction, which has
to be compared to the practically BSSE-free result of
—20.51 kJ/mol obtained from a 444 uncontracted basis
functions MP2-R12 calculation at the same geometry
[19]. At present, this makes the highly accurate calcula-
tion of a complete potential-energy surface for the water
dimer or even only larger portions of it prohibitively
expensive.

On the other hand, when one considers only geome-
tries in the neighborhood of the minimum geometry of
the dimer it is possible to design a much smaller basis
set comprising only 249 basis functions which nearly
reproduces the converged interaction energies [25]. To
achieve this, the donor hydrogen atom involved in the
hydrogen bond is described with a larger basis set than
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that for the other hydrogen atoms. Furthermore, a set
of bond functions is employed. The availablity of
this “interaction-optimized” basis set was one of the
prerequesites for the determination of a full basis set
limit for the optimized CCSD(T) water dimer structure
including monomer relaxation [27], while the more
conventional approach where one uses systematic series
of standard basis sets without bond functions to ex-
trapolate to a complete basis set limit equilibrium
structure currently seems to be practicable only at the
MP2 level [28]. The not equivalent description of the
hydrogen atoms makes it impossible to use basis sets as
that proposed in Ref. [25] for a complete scan of the
intermolecular potential-energy surface. For this
purpose, it is certainly preferable to describe all four
hydrogen atoms with the same basis set.

On the other hand, the use of bond functions will be
advantageous for the calculation of the entire potential-
energy surface rather than of only its region close to the
minimum. Bond functions were first used in 1977 in an
attempt to improve dissociation energies of covalent
bonds [29] and van der Waals complexes [30]. They were
soon criticized for causing large BSSE, especially in
electron-correlation calculations [31]. While, thereafter,
they were not much used to describe covalent bonds,
they have been used occasionally to determine inter-
molecular interaction energies [32-34] from calculations
where BSSE is corrected for by application of the
counterpoise correction. Tao and coworkers [35-38]
analyzed the role bond functions play in improving the
description of intermolecular correlation, i.e., dispersion
forces, and developed criteria for their application. They
suggest that one should first saturate the monomer basis
set well enough to minimize the BSSE at the Hartree—
Fock (HF) level and provide sufficient intramonomer
correlation functions before adding a set of bond func-
tions. Interaction energies were then found to be stable
against displacement of the bond functions and varia-
tion of their exponents. Yet, subsequent investigations
by several authors have shown that the intramonomer
correlation contribution to the first-order electrostatic
interaction energy may be strongly influenced by the
presence of bond functions and that this may also show
up in the anisotropy of the potential-energy surface
[39-41]. While supermolecular calculations yield only the
total interaction energy, SAPT calculations provide an
ideal means to sort out the different effects of the bond
functions on the individual interaction energy compo-
nents and therefore allow possible sources of error to be
controlled.

In this article we investigate the role bond functions
play in improving the convergence of supermolecular
and SAPT interaction energies for widely different
regions of the potential-energy surface of the water
dimer. In previous work by Szalewicz and coworkers
[42, 43] only hydrogen-bonded geometries were consid-
ered. We will also study geometries where two hydrogen
atoms or two lone pairs point at each other and where a
lone pair points into the gap between two hydrogen at-
oms. To obtain a systematic picture of the advantages
and disadvantages of bond functions we will use them in
conjunction with the aug-cc-pVXZ series of basis sets
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with up to augmented quadruple-zeta quality, while their
influence on individual components of the interaction
energy will be analyzed in detail for the augemented
double- and triple-zeta basis sets. Furthermore, we will
extend upon the previous studies on the use of subsets of
the total basis set in SAPT calculations [42, 43] and ex-
amine how well a “subset combination scheme”, which
computes different energy contributions in different
subsets, performs in various regions of the potential-
energy surface. Next, the effects of displacing the center
of the bond functions will be examined. Finally, we will
present a direct comparison of the outcome of the SAPT
calculations with MP2, fourth-order Moller—Plesset
perturbation theory (MP4) and CCSD(T) results ob-
tained in the same basis sets, which will also allow an
estimation of the basis set limit of the SAPT interaction
energy.

2 Methods and technical details

All supermolecular calculations in this work were carried out with
the Gaussian94 program [44], while individual contributions to the
interaction energy were computed with the SAPT program for
intermolecular SAPT from Jeziorski et al. [13], interfaced to the
ATMOL integral and self-consistent-field package [45]. The fol-
lowing energy contributions were considered. The first-order HF
electrostatic energy £ " and its correlation correction, €, resp(3)
correct to third order in the intramolecular correlation potential as
well as the HF exchange contribution Eix(c)l)1 and its correlation
correction e, (CCSD) determined with converged coupled-cluster
singles and doubles amplitudes for the monomers. Furthermore,
the second-order induction energy contributions Eflfg)lesp,

iui indresp> Which contain the effects of orbital relaxation on

the coupled perturbed HF (CPHF) level, and their true correlation

corrections tEi(nd) and 'EZ2)

exch_ing> Which include second-order

intramonomer correlation. Please note that the exchange
co(nt)rlbutlon (w()is not calculz(lted dlrectly but was estimated as
Eexch ind Eexch ind,resp md /Emd resp” Fmally, the dlspersmn

energy contributions E((hsrz’ Eéi&)l_dlsp, gi)p(Z) were computed. The

first two contributions were determined through the uncoupled
perturbed HF approximation and thus do not contain the effects of
orbital relaxation, while €y, (2) accounts for second-order intra-
monomer correlation contributions to Ed‘q The — presumably
small — exchange correction to this term is currently not available.
Detailed information about the calculation of the energy contri-
butions is found in Refs. [46-55] and is reviewed in Ref. [12]. The
total intermolecular interaction energy is obtained as

Einy = Emt +E§(XIET ’ (1)

where EIF is the counterpoise-corrected supermolecular interaction
energy calculated at the HF level and

1 2
E(S:‘/)\rlr)T = EE)o)l resp(3) exch (CCSD) + Eélsp) + fth (2)
+ EiXCl)‘l disp + lEl(ﬁ) + E(ezxzc)h ind (2)

is the sum of all intramolecular and intermonomer correlation
contributions to the interaction energy. The second-order SAPT

counterpart to EHF is defined by
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EStr = Epal’ + Ebsah + Ejngresy + Eoxen- (3)

pol ind,resp exch—ind,resp
giving rise to the quantity
HF __ pHF HF
0 =k —E SAPT (4)

nt nt

which contains the higher-order induction and exchange—induction
contributions on an uncorrelated level. According to Eq. (1) the
total intermolecular interaction energy has been calculated by
adding the full counterpoise corrected supermolecular HF inter-
action energy, EHF, to a sum of correlation corrections calculated
by SAPT (see Eq.2). By this, the main 1nterest in calculatmg
th(g HF 1nteract10n energy contributions g1 g1 20)

ol ’ exch? md Jresp?
and o8F

is to analyze the HF 1ntermolecular interaction

exch—ind,resp int

energy.

Three different basis sets were examined in this work. They were
all derived from the aug-cc-pVXZ basis sets of Dunning and
coworkers [23, 24] by adding bond functions which, unless noticed
otherwise, were placed in the middle of the line between the oxygen
atoms. The smallest basis set employed, termed apVDZ, was
obtained from the aug-cc-pVDZ basis set by adding a [3s2p1d] set
of bond functions with the same exponents as given in Ref. [43]
(s: 0.553063, 0.250866, 0.117111, p: 0.392, 0.142 and d: 0.328).
A larger basis set, termed apVTZ, consists of the aug-cc-pVTZ
basis set along with the above set of bond functions and a further
bond f function with exponent 0.372. Exactly the same set of bond
functions was added to the aug-cc-pVQZ basis set to yield the
apVQZ basis set. This largest basis set comprises a total of 365
contracted basis functions, 21 functions more than the original
aug-cc-pVQZ basis set. For technical reasons, it could only be used
in the supermolecular calculations.

The SAPT program package is not restricted to the use of the
entire basis function space including the complete subspaces of the
two monomers and the midbond functions; SAPT also allows
different subsets of the basis set to be employed. Six different basis
function subsets for the SAPT calculations were tested, as shown in
Table 1. These subsets are either related or identical to the basis
function subsets used by Williams et al. [42]. We found it conve-
nient to use a somewhat different nomenclature for them, for
example, the purely monomer centered basis function subset is
simply termed MC and the dimer-centered one without bond
functions DC. If bond functions are added to the subset, this is
signaled by appending ‘ + b’ to the name of the subset. In the same
way, further basis functions centered on the positions of the atoms
of the other monomer, the so-called far-bond functions, are indi-
cated by the appendix ‘+ f* to the name of the subset. The far-bond
functions for the apVDZ basis set consist of MC subsets without
d functions on the “ghost” oxygen atom and without p functions
on the “ghost” hydrogen atoms. In the apVTZ calculations the far-
bond functions are formed by removing the d and f functions on
the oxygen atom and the p and d functions on the hydrogen atoms.
Note that with this nomenclature the apVXZ/DC subset is nothing

Table 1. Abbreviations for the

basis function subsets used in Notation

the symmetry-adapted pertur-

bation theory calculations MC (MCBS)*

MC+f

DC (DCBS)®*

MC+b

MC+b+f (MC+ BS)*
DC+b (DC+BS)*

Description Basis size®
Monomer-centered basis set 92 (41)
MC with far-bond functions 117 (60)
Full dimer-centered basis set 184 (82)
MC with midbond functions 113 (55)
MC + f with midbond functions 138 (74)
DC with midbond functions 205 (96)

Notatlon from Ref. [43]

®For the apVTZ (apVDZ) basis set



other than the original aug-cc-pV XZ basis set while apVXZ/DC +b
stands for the full apVXZ basis set. These are the only “‘subsets”
available for counterpoise-corrected supermolecular calculations.
The geometry chosen for the water monomer was the average
geometry of its ground vibrational state [43]. It is characterized by
an OH distance of 0.9716 A and an HOH angle of 104.69°. Mainly
six different water dimer geometries with the four different orien-
tations of the monomers displayed in Fig. 1 were investigated in
this work. These geometries were assigned according to the struc-
tural elements directed towards each other along the intermolecular
axis, denoting a hydrogen atom as ““H”” and a lone pair as “X”’. The
proton—lone pair geometry corresponding to the SAPT-optimized
minimum of the potential-energy surface according to Ref. [43] is
denoted by H—X2. Its geometrical parameters are Ro—o = 2.953 A,
o =6.8° and = 124° in the usual convention [17, 18]. Further-
more, two geometries with the same monomer orientations and
distances of 2.457 A for H—X1 and 3.450 A for H—X3 were also
investigated. In the other dimer geometries the water monomer was
considered as a regular tetrahedron with the two protons lying on
one of the tetrahedron edges, the lone pairs on the opposite edge
and the oxygen in the tetrahedron center. This allows important
dimer structures to be scanned in a systematic manner. For
example, by positioning the monomers such that the tops of the
tetrahedra are directed towards each other, H—H, H—X and X—X
top—top structures are formed. In an analogous way the top—edge,
edge—edge and other dimer structures are generated. For the lone
pair-lone pair X—X and the lone pair—proton/proton top-edge
X—HH geometry an O—O distance of 2.953 A was chosen. For the
H—H geometry a larger O—O distance of 3.500 A had to be used in
order to avoid linear-dependency problems in the basis set. The
global minimum structure comes very close to the_ideal proton—
lone pair top—top H—X geometry with Ro—o = 3.0 A, and it is this
ideal geometry which was used in our investigations of the effects of
shifting the bond functions away from the midbond position. In
these investigations a slightly modified X—X geometry was also
used, with Ro—o increased to 3.0 A for simplicity. Finally, in some
calculations the dimer equilibrium structures as given by Schiitz

X_X NS

Fig. 1. Relative orientations of the water monomers in the dimer
geometries. The position of the midbond functions is indicated by
the light-grey circle
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et al. [17] and Halkier et al. [18] were also considered. In the
“Schiitz geometry” monomer relaxation was taken into account
approximately, while in the “Halkier geometry” the water mole-
cules were fixed in their monomer equilibrium structure.

3 Results and discussion

In the following we will discuss the effects of BSSE [26]
on several occasions. For clarity, the term “zeroth-order
BSSE” will be used to describe the lowering of the
monomer energies due to the presence of the other
monomers ghost basis functions. So defined, the zeroth-
order BSSE will be completly removed by application
of the counterpoise correction. The term “‘first-order
BSSE” will be used to describe the effects of the
deformed monomer densities (and density matrices)
on the first-order intermolecular interaction energy,
while the term ‘“‘second-order BSSE” similarly means
the influence of the ghost functions on the static and
response properties of the monomers entering in the
calculation of the second-order interaction energy. The
terms ‘‘higher-order BSSE” [56] and “‘secondary BSSE”
[57] were introduced some time ago to subsume what we
would call first-, second-, third-order BSSE and so on.
The counterpoise correction cannot remove higher-order
BSSE from the interaction energy.

3.1 Effect of bond functions on supermolecular
interaction energies

The uncorrected and counterpoise-corrected HF interac-
tion energies for the full apVXZ basis sets (DC+b) and
their aug-cc-pV XZ subsets (DC) are collected in Table 2.
Comparing the uncorrected with the counterpoise-cor-
rected results makes it clear that bond functions quite

Table 2. Uncorrected and counterpoise-corrected Hartree-Fock
interaction energies (kJ/mol)

Geometry Basis set Uncorrected Corrected

DC DC+b DC DC+b

H—H apVDZ 26.24 20.64 27.33 27.73

apVTZ 27.09 26.36 27.45 27.50

apvVQZ 27.38 27.25 27.47 27.47

H—X1 14.24 6.83 15.95 14.79

14.04 13.39 14.63 14.55

14.31 14.20 14.51 14.51

H—X2 -16.70 -2235 -1578 -15.91

-1598 -16.72 -15.69 —-15.83

-1596  -16.08 -15.84 —-15.83

H—X3 -13.82 -1832 -13.36 -13.29

-13.39 -1399 -13.16 -13.20

-1327 -13.39 -13.19 -13.19

X—HH -2.35 -6.07 -1.57 -1.38

-1.57 -2.08 -1.33 -1.36

-1.42 -1.54 -1.33 -1.35

X—X 15.21 10.85 15.52 15.13

14.94 14.32 15.15 15.14

15.06 14.94 15.12 15.13

Halkier -15.70  -21.61 -14.64 —-14.82

et al. [18] -14.92  -15.69 -1459 -14.74

-1488 -15.00 -14.75 -14.74
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substantially increase zeroth-order BSSE, especially for
the augmented double- and triple-zeta basis sets and that
the counterpoise correction should always be employed
when bond functions are used. While addition of the
bond function set to the aug-cc-pVQZ basis set has
practically no effect when the counterpoise correction is
employed, its addition to the augmented triple-zeta
basis set has a slight influence on the counterpoise-
corrected interaction energies, which, interestingly, is
most pronounced for geometry H—X2, i.e., close to the
minimum. The interaction energies from the augmented
double-zeta basis set are always significantly influenced
by the presence of bond functions. In general, the
counterpoise-corrected interaction energies seem to be
quite well converged with the augmented triple-zeta
basis set, the bond functions improving the conver-
gence pattern somewhat. Yet, one should remember
that bond functions are intended to improve the
description of the intermolecular correlation effects
and not of the uncorrelated HF densities in the region
between the monomers. When the monomer basis set
is not large enough they will deform the monomer
electron density and its response properties, thus
adding to higher-order BSSE. The relatively large
changes between the counterpoise-corrected (and
therefore zeroth-order BSSE-free) DC and DC+b
results for the apVDZ basis lead one to suspect that
higher-order BSSE is not negligible for this basis set at
the HF level.

The results of the MP2 calculations are collected in
Table 3. In these calculations the 1s electrons of
the oxygen atoms were treated in the “‘frozen-core”
approximation, i.e., they were not correlated. The
complete basis set limit is far from being reached with
the quadruple-zeta basis set for most of the geometries

Table 3. Uncorrected and counterpoise-corrected second-order
Moller—Plesset theory (frozen-core) interaction energies (kJ/mol)

Geometry Basis set Uncorrected Corrected
DC DC+b DC DC+b
H—H apVDZ 18.57 3.81 21.99 21.96
apVTZ 19.51 15.01 21.71 21.67
apVQZ 20.38 18.83 21.68 21.68
H—X1 1.06  -22.34 8.19 5.65
—-0.49 =7.27 3.19 2.79
-0.47 -2.25 1.58 1.53
H—X2 -22.09 4048 -18.82 -19.81
-21.90 -27.48 -20.04 -20.39
-21.61 -23.44 -20.69 -20.72
H—X3 -16.10 -29.90 -14.38 -14.68
-15.79  -19.84 -14.64 -14.77
-15.30 -16.84 -14.85 -14.87
X—HH -5.60 -22.90 -3.47 -4.24
-5.52 -10.72 —4.38 -4.70
-5.36 —-6.78 —4.82 —4.92
X—X 11.63 -5.83 12.67 11.77
10.93 5.53 11.72 11.50
11.25 9.65 11.54 11.45
Halkier -21.58 -40.85 -17.99 -19.09
et al. [18] -21.36  -27.29 -1937 -19.74
-21.07 -2295 -20.08 -20.11

except for, perhaps, the H—H and X—X geometries.
Sometimes the basis set limit is estimated from a
procedure where both uncorrected and counterpoise-
corrected interaction energies are extrapolated [18§].
While such an extrapolation scheme may be useful
when only the DC subsets are considered, it becomes
meaningless when bond functions are included. Yet, the
bond functions in general help to improve convergence
of the counterpoise-corrected results. This is especially
true for the X—X geometry, which is void of any basis
functions in-between the oxygen atoms for the DC
subsets. Here it appears that addition of a bond func-
tion set is enough to bring the interaction energy from
an augmented triple-zeta basis set close to convergence.
For the hydrogen-bonded and the X—HH geometries
inclusion of the bond functions on the augmented tri-
ple-zeta level brings the apVTZ results in-between the
aug-cc-pVTZ and aug-cc-pVQZ values. On the aug-
mented quadruple-zeta level, inclusion of bond func-
tions has a relatively small effect of less than 0.1 kJ/mol
for the geometries considered. This, however, does not
mean that the apVQZ results are close to converged for
the hydrogen-bonded geometries, as is evident from the
apVQZ interaction energy of —20.11 kJ/mol for the
Halkier geometry, which has to be compared to an
estimate of —20.5 £ 0.1 kJ/mol for the complete basis
set limit of the frozen-core MP2 interaction energy [18,
19]. Finally, in the case of the H—H geometry for all
three basis sets addition of bond functions has practi-
cally no effect on the MP2 interaction energy. At first
sight, one should expect that for a geometry where the
region between the oxygen atoms is already crowded
with the basis functions on the hydrogen atoms. Yet,
taking into account that the HF interaction energy as
calculated with the augmented double-zeta basis set is
raised significantly (by 0.40 kJ/mol) when the bond
functions are added, one observes that there is a
compensating effect in the correlation contribution to
the interaction energy in this case.

Taking a closer look at the effect of bond function
addition on the correlation contribution to the interaction
energy we see that its magnitude falls roughly into three
groups: with the augmented double- (triple-) zeta basis set
one finds a lowering of —1.38 (—0.32) kJ/mol for the
H—X1 geometry with its O—O distance of about 2.5 A,
lowerings of —0.86, —0.97 and —0.51 (—0.21, —0.29 and
—0.21) kJ/mol for the H—X2, X—HH and X—X geome-
tries where the oxygen atoms are separated by about 3.0 A
and, finally, lowerings of —0.43 and —0.37 (—0.09 and
—0.11) kJ/mol for the H—H and H—X3 geometries with
their interoxygen distance of about 3.5 A. While the
modifications of the interaction energy which are intro-
duced by the bond functions notably in case of theapVDZ
basis set strongly depend on the orientation of the
monomers, their influence on the differential correlation
contribution seems to depend mostly on Ro—p. Summing
HF and correlation contributions together, one thus finds
that the (favorable) effects of bond functions on the con-
vergence of total interaction energies as obtained with
basis sets of up to augmented triple-zeta quality may differ
considerably for various regions of the potential-energy
surface.
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-1.12
-1.00

0.11
—-5.67
-5.67

0.00
-4.29
-4.70
—-0.42
10.85
10.44
-0.41

-0.70
-0.87
-0.17
—4.45
-5.25
-0.80
-3.12
—4.27
~1.15
12.40
10.88
-1.52

-1.88
-1.72

0.16
-8.93
—-8.98
-0.05
-4.08
—4.97
—-0.88
-5.46
-6.32
-0.86

-1.30
-1.56
-0.26
-7.17
-8.47
-1.30
—2.44
-4.48
-2.04
-4.02
-5.81
-1.79

-0.78
-0.72
0.06
-3.92
-3.93
-0.01
-1.75
-2.11
-0.36
-15.04
-15.31
-0.27

-0.61
—-0.68
-0.07
-3.45
-3.80
-0.35
-1.23
-1.98
-0.75
—-14.59
-15.14
—-0.55

-1.88
-1.72
0.16
-10.60
-10.66
—-0.06
-4.17
=545
-1.29
—-20.08
-21.29
-1.20

-1.46
-1.62
—-0.16
-9.35
-10.36
-1.01
-2.86
=513
-2.27
—-18.64

-20.82
-2.18

-3.64
-3.31
0.33
-29.82
-0.57
-10.81
—-15.68
-4.87
3.99
-1.12
-5.11

-30.39

-2.90
-3.14
—-0.24
-27.08
-2.76
-8.20
-15.00
—-6.80
7.74
—-0.37
-8.11

-29.84

-1.34
-1.24

0.10
=7.03
-7.02
-0.01
—-6.18
-6.38
-0.20
21.55
21.12
-0.43

-1.10
-1.20
-0.10
—-6.42
-6.93
-0.51
-5.62
-6.25
-0.63
21.71
21.20
-0.51

Table 4. (Contd.)

2
e (2)
E2),
EQbr

Eint

3.2 Effect of bond functions on SAPT
interaction energy contributions

In order to analyze the findings in Sect. 3.1 the
individual interaction energy components calculated
with the full DC+Db and the DC subsets of the apVDZ
and apVTZ basis sets are compared in Table 4. Note
that no counterpoise correction (which would only
remove zeroth-order BSSE) is to be applied to these
perturbational first- and second-order results, which
may be influenced by higher-order BSSE only.

Let us first look at the contributions to the HF
interaction energy. As already mentioned, with the
augmented triple-zeta basis set it is only the H—X2
geometry for which addition of the bond functions
leads to an appreciable change of 0.14 kJ/mol. This
energy-lowering is mostly due to the first-order energy
contributions, thus indicating that enhancement of
first-order BSSE is responsible for this effect. For the
H—X1 geometry, where the bond functions lie even

closer to the hydrogen atom involved in the hydrogen
bond, the changes in EI()IO(:) and Ef:)l(g})l nearly cancel each
other, as is also the case for the alterations in the

second-order contributions. Similarly, when one adds
the bond functions to the smaller aug-cc-pVDZ basis

(20) (20)
ind, resp and Eexchfind, resp have a

tendency to cancel and it is mainly Ef)lo?) whi ch causes

set the changes in E

the modifications in the HF interaction energy, bring-

ing it in closer agreement with the apVTZ results. If the
presence of first-order BSSE cannot be completely ru-
led out for the apVTZ basis set, it will certainly be
present in apVDZ results, yet, as it appears, this does
not necessarily have negative consequences.
Comparing now the apVDZ/DC + b with the apVTZ/
DC+b values, one may claim that the counterpoise-
corrected HF interaction energy 1is, in general,
sufficiently well converged with the apVDZ basis set, the
energy alterations being smaller than 0.1 kJ/mol, except
for the two geometries with short interatomic distances
(Ry—u = 1.561 A for the H—H structure, Ro-n =
1.502 A for the H—X1 structure). The individual energy
contributions to £HF may change much more drastically
(by up to 3.4 kJ/mol) when replacing the apVDZ
with the apVTZ basis set, especially in the case of the
second-order induction energy and its exchange correc-
tion but, similar to the earlier discussion, the changes in
these two contributions nearly cancel each other. In
general, that also seems to be the case for the higher-
order induction contributions, as indicated by the very
small variation of 51 in most cases. A notable exception
to that rule is found for the H—X1 geometry — which is
certainly not surprising in view of the magnitude of the
induction energies in that case. One can interpret this as
a consequence of a large charge-transfer contribution
which may not be adequately described with the apVDZ
basis set. Except for the H—X1 dimer structure, it is
the first-order contributions £ 10? and Eelgh which are
mainly responsible for the remaining slight alterations in
EHF when the basis set is enlarged from apVDZ to

nt

apVTZ.



Let us now examine the variations of the intra-
monomer and intermonomer correlation contributions
to the interaction energy. Addition of bond functions to
the aug-cc-pVTZ basis set has hardly any effect on the
correlation contributions to the first-order and second-
order induction energies and even for the aug-cc-pVDZ
basis set their influence is quite small. The dispersion
energy contributions, on the other hand, are strongly
improved by the addition of bond functions to the aug-
cc-pVDZ basis set and (to a lesser extent) to the aug-cc-
pVTZ basis set. The variation in the dispersion energy
components thus dictates the variation in the total
correlation contribution, Eg\hp, which incidentally
reflects the corresponding trends found for the geome-
try dependence of the bond function effects on the MP2
correlation contribution (cf. Sect. 3.1).

Comparing the apVDZ with the apVTZ interaction
energies, it is interesting to observe that the sum of all
correlation contributions to the second-order interaction
energy, 1.e.,

(20) (20) 2 (22) (22)
E<(:o)rr - Edlbp + Eexch disp + 6disp (2) + Eind + Eexch ind?

(5)

hardly alters when the full DC + b basis set is improved,
while the same does not hold when one compares the
results obtained in the DC subsets. It is hard to
understand why the changes in these physically quite
different correlation contributions cancel to such a large
extent once the bond functions are included, but as a
matter of fact, for all of the dimer structures considered
the improvement in E{} achieved with the apVTZ
basis~set can mostly b% recovered from the first-order
contributions alone [€,5) e (3) + €0y (CCSD) = —0.20,

—4.31, —1.22, —0.34, —0.84 and —0.41 kJ/mol for
geometries H—H to X—X, respectively]. Thus, one is
led to suspect that the apVDZ/DC + b basis set is nearly
sufficient to determine the sum, Ecoy;, of the intramolec-
ular and intermonomer correlation contributions to the
second-order interaction energy and that the apVTZ/
DC +Db basis set should reproduce the converged value
for this quantity quite independently of the relative
orientation of the monomers — at least for the range of
intermolecular distances considered. This means that it
is mainly the correlation contribution to the first-order
energy which is hard to converge. From the results in
Sect. 3.1 we may see that an augmented quadruple-zeta
basis set is still not large enough.

Finally, let us remark that the apVTZ/DC +b inter-
action energy contributions for the minimum structure
H—X2 agree to better than 0.1 kJ/mol with the high-
quality 152 basis functions MC + b + f results of Mas and
Szalewicz [43], i.e., practically within the rounding errors

of their data, except for the E2Y and EZ

ind, resp exch ind, resp
contributions (deviations of —0.3 and +0.3 kJ/mol,
respectively) and for egéSD, which in our case is lower by
about 0.15 kJ/mol. In the following section it will be seen
that the apVTZ/DC+b basis set comprising 205 basis
functions can be reduced to a 138 basis functions
MC+b+f subset with little loss of quality, and that
further reductions are also possible.

377

3.3 Convergence of interaction energy contributions
with the basis subset

Let us choose the DC+b energy components as
reference values for the energy contributions computed
in smaller subsets. As discussed previously, they may
be affected by first-order and higher-order BSSE.
Nevertheless, this choice can be justified by the fact that
the unphysical deformations of the molecular static and
induced charge distributions decrease with the com-
pleteness of the monomer basis sets and accordingly we
did not find much evidence for their presence in the
calculations conducted within the apVTZ basis set.
Furthermore, it has been shown [42] that it is extremely
difficult to converge interaction energies without using
midbond and far-bond functions.

The differences, AE, between the interaction energies
determined with a given basis function subset and the
values calculated with the full DC+b set (cf. Table 4)

are shown in Figs. 2-5. For example pol (MC
apVTZ) = pol (MC apVTZ) — pol (DC+b apVTZ).

The order of the points connected by solid (apVTZ) and
broken (apVDZ) lines in the diagrams is the same as that
of the geometries in Table 4, i.e., each first point corre-
sponds to geometry H—H, every second point to
geometry H—X1, and so on.

The first- order energy contributions E( and Eexch

are almost converged to the DC+b leue for the DC
and MC+Db+f subsets of the apVTZ basis set (Fig. 2).
For the apVDZ basis set, essentially only the
MC + b + f subset can be considered as converged. The

correlation corrections to the first-order energies
el (3) and ! (CCSD) show only very slight devi-

pol,resp exch

ations from the DC + b-values for all the subsets of the
apVTZ basis set and for those of the apVDZ basis
subsets, which include far-bond functions. This demon-
strates that it is mandatory to use far-bond functions to
reliably describe uncorrelated first-order energies,
whereas the correlation corrections to £ 10)1 and Eéiih are
much less sensitive to the choice of the basis function
subset, which allows them to be determined quite accu-
rately with the smallest (MC) subset.

Concerning the induction energy components and
their correlation corrections (Fig. 3), the DC and the
MC+b+f subsets provide a good description of all
the contributions, while the MC+f subset yields very
satisfactory results for the correlation corrections. The
deviations of the MC and MC + b energy contributions
from the DC+Db values tend to compensate to some
extent for their exchange counterparts, but not well
enough to get a reliable sum of the second-order
induction effects. Clearly to describe induction energies
and their correlation corrections correctly, it is necessary
to use far-bond functions.

For the dispersion energy contributions, however,
midbond functions play an important role, in particular
for the apVDZ basis set, as known from the previous
sections and as it is also clearly seen from the results
displayed in Fig. 4. Unfortunately, even with the
MC+b+f subset one cannot reproduce Efj as accu-
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Fig. 2. Deviations AE of the £10) £(10
first-order interaction energy pol exch
components computed with the 2 i 3 [ T
basis function subsets from the
full DC + b results. The apVDZ 1
basis subset values are 5
connected by broken lines, g0
those of the apVTZ basis subset 2
by solid lines w-r
<
.2 L
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Epﬂl,resp(s) sexch(CCSD)
2t 2t
= 1 1+
5
E A
w
< -1
-2 2
MC MC+ DC MC+b MC+b+f MC MC+# DC MC+b MC+b+f
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AE [kJ/mol]

MC  MC+

rately as is possible for all other contributions. Yet, for
medium-to-large intermolecular distances the MC+ b+ f
and, if one does not aim at very high precision, also the
MC+Db subsets perform well enough. The H—XI
geometry is a notable exception. Here, the DC subset is
the best subset of the full apVTZ basis set. This is par-
tially due to the closeness of the locations of the bond
functions and the hydrogen bonded H atom in that case
(0.3 A, cf. also Fig. 1). With increasing monomer basis set
size the hydrogen basis set may absorb larger and larger
parts of the energetic effects of the bond functions. On the

DC  MC+b MC+b+f MC MC+ DC MC+b MC+b+t

other hand, with the MC+b subset double excitations
from two occupied orbitals localized at different mono-
mers A and B into virtual orbitals localized at the same,
single monomer A (or B) cannot be described, and even
the MC + b +f subset is not really adequate to describe
their contribution to the dispersion energy. This “‘ionic”
contribution, which can be seperated out in the local MP2
scheme of Schiitz et al. [58], was found to vary expo-
nentially with the intermonomer distance [59], so its
(partial) neglect implicit in the use of an MC+b+f
subset will become marked at small distances.



Fig. 4. Deviations AE of the
basis subset second-order dis-
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All in all, the MC+ b+ f basis function subset gives
excellent results which are only slightly different from
the DC + b values for all energy contributions, except for
E((ﬁg ) at small intermolecular distances. In order achieve
further savmgs in computation time and disk space, a
method using different basis function subspaces for
different energy contributions was suggested by Williams

et al. [42]. According to their ﬁndings confirmed by the
above results, ¢) (3) and et (CCSD) could be

pol,resp exch
calculated in the MC basis function subset, whereas for
the correlation corrections to the induction energy
contributions a MC +f basis function subset has to be
used. Accepting the deficiencies at small intermolecular
distances, the MC + b subset can be chosen as the most
suitable basis function subset for the dispersion energy
contributions. Remember that the uncorrelated first-or-
der and second-order induction contributions form part
of the HF interaction energy, which is easily calculated
with the full DC+ b basis set. If needed for the purpose
of analysis or fitting of potential-energy surfaces, one
can extract these contributions from calculations with
the MC + f subset, which saves some computation time
during the solution of the CPHF equations for the
induction energies. Note also that, by construction, (3lm
will absorb the difference between EX¥.. calculated in
the MC+f subset and ELN, calculated in the full
DC+b set.

This ““subset combination scheme” saves about 25% of
the calculation time of a apVTZ/MC+ b +f calculation
and, which is more important, 50% of the disk space. The
results of that scheme are only slightly inferior to the
MC+Db+f results, as can be seen for the contributions
525 , E&Gpr and Eiy shown in Fig. 5. It performs signifi-
cantly better than the less expensive pure MC + b scheme,
which, however, does not describe the individual induc-
tion contributions very well, and, for most geometries, it
also performs better than the much more expensive pure

DC  MC+b MC+b+f

DC scheme. For the minimum geometry H—X2 it yields a
total interaction energy of —21.08 kJ/mol, i.e., 1% less
than the full DC + b scheme (—21.29 kJ/mol), whereas the
152 basis function MC+b+f calculation of Mas and
Szalewicz [43] gave —21.13 +0.04 kJ/mol, in excellent
agreement with our 138 basis function MC + b + fresult of
—21.15 kJ/mol. For the H—H, H—X1, H—X3, X—HH
and X—X geometries the combination scheme gave
interaction energies of 21.16,0.11,—15.24,—-6.20 and
10.49 kJ/mol, respectively, which compare very well with
the apVTZ/DC + b results (Table 4).

3.4 Dependence of interaction energy contributions
on bond function position

The interaction energy contributions for the H—X and
X—X geometries are given in Table 5 as a function of the
position of the bond function center for the apVDZ/
DC+b, apVDZ/MC+b+f and apVTZ/MC+Db+f ba-
sis subsets. As already mentioned in the Introduction,
the ideal tetrahedron model has now been used for the
relative monomer orientations in the top-top H—X
dimer geometry (whereas the orientations found in the
“true” global minimum structures were used in the last
chapter). Furthermore, the oxygen—oxygen distance was
slightly enlarged to Ro—o =3.0 A for both, the H—X
and X—X geometries (as compared to Ro—o = 2.953 A
for H—X2 and X—X in Sects. 3.1-3.3). The bond
functions were always placed on the line between the two
oxygen atoms and were shifted in steps of 0.2 A from
Ry—0 = 1.5 A (exactly halfway) to Ry,—o = 0.5 A (one-
sixth of the O—O distance), where R,—o means the
distance between the center of the bond functions and
the closest oxygen atom (the oxygen end of the hydrogen
bridge in the case of the H—X geometry). Table 5
contains a characteristic selection of our data.
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Fig. 5. Deviations AE of the
Hartree-Fock correction, the

SAPT correlation contribution 1 i
and the total SAPT interaction
energy computed with the basis

function subsets from the full
DC + b results. The label
“comb” indicates the results of
the subset combination scheme
as described in the text

AE [kd/mol]
X\

AE [kd/mol]

N

MC MC+f

Shifting the center of the bond functions away from the
midbond position halfway between the two oxygen atoms
has a marked influence on the HF energy as calculated
with the apVDZ basis set. For the H—X orientation the
interaction energy is stabilized by about 0.14 kJ/mol
when the bond function is located approximately in the
middle between the oxygen and hydrogen atoms involved
in the hydrogen bond. The electrostatic first-order com-

ponent E( (P is mainly responsible for this effect, at lCdSt

when it 1s calculated in the DC+b basis set. The E('?

exch
contribution cancels only a minor part of the stabilization

in E(01 and the sum of the second-order induction con-
tributions is stable within 0.01 kJ /mol, although indi-
vidually they vary with the bond function posmon by as
much as 0.15 kJ/mol. The same holds for 8{F , which sums
up higher-order induction contributions and their ex-
change corrections. The strong variation of E 1 in the
apVDZ/DC + b basis set is a clear indication of ﬁrst order
BSSE. Interestingly, it is much less pronounced when the
MC + b +f subset is used, which yields a stabilization of
E(1?> by only 0.04 kJ/mol upon shifting the bond func-
tions towards the oxygen atom. In the relatively small
aug-cc-pVDZ basis set the oxygen end of the hydrogen
bridge certainly has a tendency to distribute its electrons
into midbond or ghost molecule functions. This can be
done more effectively when higher angular momentum
functions are present. Yet, this charge redistribution can
happen only when the space between the far-bond func-
tions and oxygen-centered functions is ““‘smoothly” filled
with midbond functions, thus favoring the location of
these functions between oxygen and hydrogen, which
explains the enhanced dependence on the location of the
bond functions of E;IO?) in the DC + b basis set.

DC MC+b comb MC+b+f

MC MC+ DC MC+b comb MC+b+f

The changes in £ ; in the apVDZ/MC+ b +f subset

€xc
are somewhat stronger than for the full DC + b basis set:

E1Y varies ‘Qy nearly 0.04 kJ/mol in the region between

exch

1.5 and 1.1 A (not shown in the table), while again the

(20) (20) . ,
sum of Eind. resp and E ind, resp is nearly constant over

the entire range of the bond function positions consid-
ered. Using the the MC+b+f subset to interpret the
dependence of EHIF on the bond function position it thus
appears that the higher-order induction contributions
absorbed in 611 are mainly respon51ble for the variation
in E/IF. Remember, however, that ol in this case is
evaluated as the dlfference between the counterpoise-
corrected HF interaction energy — necessarily deter-
mined with the DC+b basis set — and the first- and
second-order SAPT components determined in the
MC+Db+f basis subset. Therefore, in addition to real
physical induction effects it contains physical artefacts
due to that change in the basis function subset.
Considering, now, the X—X geometry, EXF varies by
less than 0.015 kJ/mol when the center of the bond
functions in the apVDZ basis set is shifted from the
symmetrical position between the two oxygen atoms to a
position approximately one-third of the distance be-
tween them and by less than 0.04 kJ/mol when a
strongly asymmetrical bond function position at less
than one-quarter of the O—O distance is reached.
Analyzing the individual contributions to E!F in the

DC+b and MC+b+f subsets reveals that E-0) and

ind, resp
(20)
Echind, resp show a marked dependence on the bond

function location, with Emd)resp

cal position, but again this is nearly completely Cdncelled

by reverse changes in Eéxczl ind, resp* This time, both Epol
and E!!

exch ind, resp VATY more strongly in the MC+b+f

favoring an asymmetri-
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Table 5. Energy contributions (kJ/mol) at different distances R,—o of the bond functions from the closest oxygen atom

Contribution Basis set Ry—o (geometry H—X) Ry—o (geometry X—X)

1.5 A L1A 0.7 A 1.5 A 1.1 A 07 A
E apVDZ/DC+b -30.41 -30.53 ~30.41 7.96 7.95 7.97
apVDZ/MC+b+f ~30.44 -30.48 ~30.40 7.89 7.92 7.97
apVTZ/MC+b+f -30.31 -30.31 ~30.30 7.97 7.97 7.96
E) 21.88 21.90 21.83 7.31 7.33 7.32
21.87 21.86 21.76 7.26 7.26 7.34
21.78 21.73 21.75 7.30 7.30 7.34
Epd oo -9.14 -9.29 -9.07 ~2.45 -2.54 -2.48
' -9.16 -9.14 ~8.95 ~2.50 -2.53 ~2.50
~9.46 -9.42 ~9.43 -2.73 -2.71 -2.76
EQo indsesp 4.52 4.65 4.43 1.41 1.50 1.44
4.56 4.55 4.36 1.46 1.50 1.46
4.87 4.83 4.85 1.69 1.68 1.72
ofir -2.91 -2.92 -2.94 -0.36 -0.36 -0.36
~2.89 ~3.00 -2.93 -0.26 -0.27 -0.37
-2.87 -2.84 ~2.87 -0.36 -0.37 ~0.40
EHF ~16.06 ~16.20 ~16.16 13.86 13.87 13.90
~16.06 ~16.20 ~16.16 13.86 13.87 13.90
~16.00 ~16.00 ~16.00 13.87 13.87 13.86
o resp(3) 0.96 0.92 0.92 -1.17 -1.19 -1.16
' 0.95 0.89 0.92 -1.18 -1.18 -1.16
1.01 0.99 1.01 ~1.00 -0.99 -0.98
) (cCsSD) 5.00 4.99 4.96 2.34 232 232
5.01 5.00 4.96 2.34 2.34 233
3.85 3.84 3.84 1.80 1.80 1.80
g ~1.60 -1.60 ~1.58 -0.67 -0.69 -0.67
-1.61 -1.62 -1.58 ~0.68 ~0.69 ~0.68
~1.40 ~1.40 ~1.40 ~0.62 -0.61 -0.61
B 0.79 0.80 0.77 0.39 0.41 0.39
0.80 0.81 0.77 0.40 0.41 0.40
0.72 0.72 0.72 0.38 0.38 0.38
Eg) -8.69 -8.73 ~8.65 ~4.61 -4.59 -4.50
~8.60 ~8.62 ~8.47 ~4.57 ~4.54 —4.41
~8.99 -8.98 -8.91 —4.75 -4.73 ~4.66
ESo o 1.47 1.48 1.45 0.75 0.74 0.73
1.43 1.43 1.38 0.74 0.73 0.70
1.51 1.50 1.48 0.76 0.76 0.75
e (2) -1.79 -1.78 -1.73 ~1.03 -1.02 -0.97
-1.76 -1.75 ~1.67 -1.01 -0.99 -0.93
~1.60 ~1.60 ~1.57 -0.91 -0.90 -0.87
E2. -9.82 -9.84 -9.75 -5.18 -5.14 -5.02
-9.73 -9.76 -9.57 -5.13 -5.09 -4.92
-9.77 -9.76 -9.68 -5.13 -5.11 -5.02
ES, -3.86 -3.93 -3.87 ~4.01 -4.01 ~3.86
-3.77 -3.87 ~3.69 -3.97 -3.93 -3.75
-4.91 -4.93 ~4.83 ~4.33 ~4.30 ~4.20
Eint ~19.92 -20.13 -20.03 9.85 9.87 10.04
~19.84 -20.07 ~19.86 9.89 9.94 10.15
~20.90 ~20.93 ~20.83 9.54 9.57 9.66

subset than in the DC+b subset, but this becomes no-
ticeable only for strongly displaced bond functions.

It is clear that a saturated basis set should yield
interaction energies which are independent of bond
function location. Inspection of Table 5 shows that
this is nicely the case for the apVTZ basis set of
augmented triple-zeta quality. The total HF interaction

energy is stable to within about 0.01 kJ/mol and its
individual components vary by less than 0.04 kJ/mol.
Again, the slight changes in the induction contribu-
tions cancel completely with their exchange counter-
parts.

Focussing our attention on the correlation contri-
butions to the interaction energy of the dimer in
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geometry H—X (Table 5) we first observe that their
sum, Egpr, as calculated with the apVDZ subsets
shows a minimum for a midbond function position in
the middle between the hydrogen and oxygen atoms of
the hydrogen bond. The stabilization is found to be
0.07 kJ/mol with the DC+b subset and 0.10 kJ/mol
with the MC+b+f subset, which corresponds to less
than 3% of EYLr. Adding this to the stabilization al-
ready found at the HF level one gets an overall effect of
0.21 and 0.24 kJ/mol, respectively, i.e., about 1% of the
total dissociation energy. The main contribution to
the bond function position dependence of E{Gr is
€pol. resp (3): With stabilizations of 0.04 and 0.06 kJ/mol
in the DC+b and MC+b+f subsets, respectively,
while the stabilization due to the sum of all three dis-
persion contributions amounts to about 0.02 kJ/mol
only The changes in the remaining contributions

(CCSD) tE » ) and E@), .4 are of the order of
less than 0.01 kJ /mol and become more important only
when the bond functions are strongly dislocated to a
position as close as 0.7 A to the oxygen end of the
hydrogen bridge. For the X—X geometry the apVDZ/
DC+Db correlation contribution to the interaction en-
ergy is nearly independent of bond function displace-
ment by up to 0.4 A (approximately one-third of the
O—O distance) and also its individual components do
not vary much (by up to 0.03 kJ/mol). Naturally, these
changes are strongly enhanced when the bond function
set is shifted by 0.7 A to a location one-quarter of the
distance between the oxygen atoms. It then amounts
to about 0.2 kJ/mol, or 5%, of the total correlation
contribution.

With the apVTZ/MC + b + f subset most components
of E{pr are found to be stable to within 0.02 kJ/mol
over the entire range of bond function displacements
considered for both the H—X and X—X geometries. The
obvious exception is the dispersion energy components,
but their destabilization at the most strongly displaced
bond function position amounts to only about 0.1 kJ/
mol, i.e., less than 3% of Egipy.

3.5 Comparison of correlation treatments

The total electron correlation contributions to the SAPT
interaction energies as obtained with the apVTZ/DC+b
basis set (and the combination scheme derived from it)
are compared with corresponding supermolecular results
from MP2, MP4 and CCSD(T) calculations in Table 6.
Although the apVTZ basis set does not contain core
correlation functions and thus will not properly describe
the electron correlation effects of the ls electrons, all-
electron MP2 and CCSD(T) results are shown as well in
order to facilitate comparison with the all-electron
SAPT values. The core correlation contribution of
about 0.1 kJ/mol found for the H—X2, Halkier and
Schiitz geometries is roughly half the true core correla-
tion effect of 0.18 kJ/mol [17, 19].

All in all the MP4 and CCSD(T) results are very
similar, but they differ considerably from the MP2
values, on the one hand, and from the SAPT values, on

the other. The good agreement between the MP2 and the
CCSD(T) interaction energies which is often found for
hydrogen-bonded complexes seems to be limited to the
region close to the minimum of the potential-energy
surface. In general, SAPT seems to yield the lowest
(most negative) correlation contribution to the interac-
tion energy. In the version of SAPT employed here
higher than second-order interaction energies were only
considered at the HF level, some corrections due to
intramonomer electron correlation were treated with
a relatively low order of perturbation theory and the
exchange contribution to the monomer correlation
correction of the dispersion energy was neglected
entirely. The latter contribution will be positive, so it

tends to improve agreement of E{NL; with EELL

CCSD(T)?
though, perhaps, not substantially estimating it as
e 2) = E20

exch—disp exch—disp x 6dlsp( )/Edlsp ylelds values of
0.12, 0.80, 0.30, 0.08, 0.30 and 0.17 kJ/mol for geome-
tries H—H to X—X, respectively, with the apVTZ basis
set. In the CCSD(T) method, on the other hand, the
important contribution due to connected triple excita-
tions is estimated perturbationally and, in the absence of
full CCSDT calculations on the water dimer, one cannot
be sure whether their iterative treatment would not be
necessary — though this is not very probable from the
general evidence collected so far.

Let us try to give a rough estimate of the complete
basis set (CBS) limit for the SAPT interaction energy.
From the data presented in Refs. [18, 19] the CBS limit
of the all-electron MP2 interaction energy at the Halkier
geometry is estimated to be —20.7 + 0.1 kJ/mol, corre-
sponding to a correlation contribution of —6.0 = 0.1 kJ/
mol, while with the CCSD(T) method the all-electron
correlation contribution was estimated as —6.2 + 0.3 kJ/
mol in the limit of a CBS. The corresponding values as
found with the apVTZ basis set (Table 6) are —5.10 and
—5.30 kJ/mol, respectively, i.e., they represent 85-86 %
of the CBS limit. Making the (grossly simplifying) as-
sumption that this holds also for the SAPT/apVTZ
correlation contribution, from the value of —5.98 kJ/
mol given in the Table 1 would estimate EL for the
Halkier geometry as —7.0 £ 0.4 kJ/mol in the CBS limit
and thus the energy of interaction between two water
molecules fixed in their equilibrium monomer geometry
as approximately —21.7 + 0.4 kJ/mol. Similarly, at the
Schiitz geometry the all-electron MP2/apVTZ correla-
tion contribution of —4.71 kJ/mol represents 87% of the
corresponding estimated CBS limit of —5.4 0.1 kJ/mol
[17], so one is tempted to assume that also at the H—X2
geometry the apVTZ basis set recovers about 85-87%
for the MP2 and CCSD(T) methods and, perhaps, for
the SAPT approach as well. Along these lines one ob-
tains a value of —6.3+0.4 kJ/mol for E T} at the
H—X?2 geometry, yielding to a total of —22.1 £ 0.4 kJ/
mol for the energy of interaction between two ‘‘vibra-
tionally averaged” water monomers. While this value is
certainly based on somewhat simplistic arguments, it
appears to be a more realistic estimate than the
—21.3 kJ/mol which can be deduced from the ‘“conser-
vative” estimation of the basis set incompleteness error
given in Ref. [43].
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Table 6. Hartree-Fock and electron-correlation contributions (kJ/mol) to the interaction energy for the apVTZ basis set. All-electron

results are denoted by AE, frozen-core calculations by FC

Geometry EHF EST, Jorvi E¢ESpm) EQL(DC+b) EQ(comb)

H—H AE 27.50 -5.85 -6.97 —-6.38 —-6.34
FC -5.83 -7.09 -6.96

H—X1 14.55 -12.05 -11.32 -15.68 —14.44
-11.76 -11.18 -11.06

H—X2 -15.83 —4.65 -4.78 -5.45 -5.25
—4.55 —4.61 -4.70

H—X3 -13.20 -1.61 -1.73 -2.11 -2.03
-1.57 —1.60 —1.69

X—HH -1.36 -3.41 —-4.32 -4.97 —4.84
-3.34 -4.02 —-4.27

X—X 15.14 -3.65 -4.43 —4.70 —4.66
-3.64 —-4.52 —-4.43

Halkier et al. [18] -14.74 -5.10 -5.30 -5.98 -5.75
-5.00 -5.12 -5.22

Schiitz et al. [17] -15.24 —-4.71 -4.91 -5.37
—-4.62 —4.73 -4.83

4 Summary and conclusions

Clearly, adding bond functions to basis sets centered at
the positions of the nuclei will remedy some of the
problems connected with the use of necessarily incom-
plete basis sets to compute correlated intermolecular
interaction energies. Their addition is particularly help-
ful when small basis sets of augmented double-zeta
quality are used and they do lead to significant energy
improvements when basis sets of intermediate size, such
as an augmented triple-zeta basis set, are employed. On
the other hand, adding them to an augmented quadru-
ple-zeta basis set only leads to minor improvements. To
mention an example, in frozen-core MP2 calculations at
the minimum geometry one finds energy-lowerings of
—0.99, —0.35 and —0.03 kJ/mol with the augmented
double-, triple-, and quadruple-zeta basis sets, respec-
tively. As a rule, one cannot expect that addition of a
bond function set to an aug-cc-pVTZ basis set will yield
results of the quality obtained with an aug-cc-pVQZ
basis set, which itself is far from reproducing the basis
set limit of the electron correlation contribution to the
interaction energy. Yet, the presence of bond functions
improves the dispersion energy contributions and, as
could be shown numerically by computing the individual
cc()%tribut(izcg)ns to the(z)SAPT interaction energy, the sum
Edisp + Eexch—disp + ediSp(z) + tE(22>ind +tE(%p2<ghTind of 'all
correlation contributions to the second-order interaction
energy is probably converged with an aug-cc-pVTZ plus
bond functions (apVTZ) basis set and is very close to
convergence with an aug-cc-pVDZ plus bond functions
(apVDZ) basis set — at least for the range 2.5-3.5 A of
interoxygen distances considered. It is the correlation
contribution to the first-order interaction energy which is
difficult to converge, apparently requiring a basis set of
better than augmented quadruple-zeta quality. The ex-
planation of this finding is perhaps that the first-order
energy contributions crucially depend on the radial
decrease in the outer parts of the wavefunction, the
change in which due to electron correlation is very
sensitive to the basis set.

Addition of bond functions to an aug-cc-pVDZ basis
set is accompanied by an enhancement of higher-order
BSSE (in particular of first-order BSSE), but the bond
functions do not introduce significant errors when added
to an aug-cc-pVTZ basis set. In the latter case it was also
found that one can safely neglect the very slight effects of
displacing the center of the bond functions on the
interaction energy contributions, while that is a point of
concern with the apVDZ basis set. In this case the in-
teraction energy of the H—X minimum structure could
be stabilized by as much as 0.2 kJ/mol when the bond
functions were placed in the middle between the oxygen
and hydrogen atoms of the hydrogen bond instead
of leaving them in the middle between the two oxygen
atoms.

Utilizing a combination scheme where different
energy contributions are calculated in different basis
function subsets reduces the computational effort of a
SAPT calculation with an apVTZ set considerably and
with comparatively little loss of quality. For example,
at the dimer minimum structure given by Mas and
Szalewicz [43] the SAPT interaction energy is obtained
as —21.08 kJ/mol with the subset combination scheme
derived from the apVTZ basis set, i.e., 1% less than
the —21.29 kJ/mol from the full apVTZ calculation,
but 5% more than the —20.08 kJ/mol from the full
apVDZ calculation. This value is more than 0.7 kJ/
mol lower than the —20.33 kJ/mol found in the cal-
culations with an MC+b+f subset comprising 83
functions [43] which form the basis of the SAPT-pp
and SAPT-ss water interaction potentials [11]. Since
the subset combination scheme also worked equally
well for the other dimer geometries considered, a
redetermination of the SAPT potential-energy surface
at the augmented triple-zeta level is feasible and
is currently underway in this laboratory. From a
comparison with supermolecular results we speculate
that the basis set limit for the interaction energy in
the dimer geometry of Ref. [43] is approximately
—22.1 £0.4 kJ/mol — when only taking the currently
accessible terms of the SAPT approach into account.
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With respect to this value, the new potential-energy
surface would reduce the basis set error from about
1.8 to 1.0 kJ/mol or, in other words, from about 10 to
5% of the interaction energy.
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